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Reduction of Theoretical Uncertainty in Quantum
Computing
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A theoretical framework is developed to evaluate the amount of intrinsic
uncertainty, as distinguished from operational uncertainty (noise), inherent in
quantum computation. The temporal evolution of states in quantum computing
is analyzed diagramatically, providing a visual tool for the refining of quantum
algorithms to help achieve minimal uncertainty and maximal efficiency, as well
as for better understanding of the quantum entanglements crucial to quantum
computing.

1. INTRODUCTION

Since the introduction of quantum mechanics into the study of novel

computing processes in the early 1980s [4,6,7] and the quantum mechanical
algorithms for discrete logarithms and factoring in 1994 [13] scientists have

conceived various schemes of super-parallel computation on the basis of the

superposition principle and unitary temporal evolution in quantum mechanics

[1, 10].

So far, however, the most fundamental questions of how and to what

degree the quantum mechanical parallelism supplies a nearly unique solution
that can be read by classical devices is not clearly understood. This may be

one of the reasons why there is still considerable ambiguity and skepticism

in this field.

This paper provides a diagrammatic method to visualize and assess

limitations due to intrinsic uncertainty inherent in quantum states. This intrin-

sic uncertainty is not the same as operational uncertainty, which is the noise
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Fig. 1. The input port consisting of a preparation register and an input register.

accumulated by inefficiencies of physical devices. The goal is to help build
quantum circuit algorithms that reduce intrinsic uncertainty to a level low

enough so that reduction in operational uncertainty becomes effective.

2. THE QUANTUM COMPUTING PROCESS

The computing process begins with an input port, including a n-bit
preparation register in a superposition state of maximal uncertainty, together

with an input register. We can visualize this input port as a row of boxes,

with n boxes representing the preparation register on the left, and some

boxes on the right to represent the input register, as shown in Fig. 1.

The computation proceeds via a bank of row operations. A row
operation consists of a parallel collection of control-bit/target-bit (C-T)

operations, such as controlled not (CN), controlled rotation (CR), and

controlled phase shift (CPS), as represented in Fig. 2. Each C-T operation

produces the unitary (or quasiunitary) evolution of the target bits, initially

kept in the ground state, driven by the propagation of excited control bit

states. The C-T operations are executed by methods of clock signals and
biased band gap [10].

The overall process of quantum computation may be understood as

consisting of four main steps. In Fig. 3 we show a schematic example

of a solid-state quantum computer as proposed in refs. 10.

Each small box in Fig. 3 represents a quantum bit. Each row represents

a quantum state, which evolves from row to row to the final solution state
through row operations. The four main steps for the computation are repre-

sented by sections A, B, C, and D.

The first step is to prepare the preparation register (section A), which

is a superposition (minimum, or zero, entanglement) of the ground state ) 0 &
and the excited state ) 1 & in each of n bits. Part of the preparation resister
may be kept in the ground state if necessary. We’ ll call the state of each bit

Fig. 2. A parallel collection of C-T operations. Each pair connected by an arrow represents

a control-bit/target-bit pair.
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Fig. 3. A schematic diagram representing a solid-state quantum computer. Section A is the

input port, consisting of the preparation register on the left and the input register on the right.

Section B is the first bank of row operations containing the algorithim for making the super-

parallel quantum computation. Section C is the bank of row operations designed to reduce

overall intrinsic uncertainty, and section D is the output port. Sections B and C might contain

subsections B8 and C8 for reducing phase errors.
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a bit-state. (To increase resistance of the bits to decohering agitations, each

bit is an ensemble of quantum dots [10], which fact is usually emphasized

by writing the bit states as ) 0Ä & and ) 1Ä & . We omit the tildes in this paper,

however, with a reminder to the reader that our bits are ensembles.)

The state of the preparation register can be represented by an n-dimen-

sional vector (b1, b2, . . . , bn), where each bi is a number between 0 and 1,

representing the probability that bit i is in the excited bit-state ) 1 & . The number

bi is obtained by bi 5 ) ei ) 2, where each bit is in a superposition g ) 0 & 1 e ) 1 & .
The initial preparation state is the state of maximum intrinsic uncertainty,

(1±2 , 1±2 , . . . , 1±2 ) [5,12]. We also call this a state of maximal dispersion, as

opposed to a dispersion-free state, where each bi is either 0 or 1 [5]. It is

not hard to see that there are 2n vectors representing dispersion-free states

in the n-dimensional state space (folded diagram of state space).

Computation proceeds as the downward sequential execution of a bank

of row operations (section B). Each row operation results in an evolution of

the preparation state, generating the quantum mechanical entangled states.

A row operation may increase or decrease the intrinsic uncertainty (dispersion)

of the preceding state. We address that issue in Section 3 of this paper.

Within section B there may be subsections B8 where bit states might

be transformed by a Hadamard transformation

1

! 2 1 1 1

1 2 1 2
for increased resistance to phase errors. Because a phase error in the trans-

formed state corresponds to a pair of bit errors in an original bit state,

stabilization may be increased by dipole±dipole interactions within each

ensemble of quantum dots to reduce bit errors [10]. After a phase-sensitive

row operation, the reverse Hadamard transformation may be applied to the

bits. We denote a bank of rows accomplishing these transformations by B8.
There may be many such banks within B and same for C1 within C.

The third step in the overall computation, represented by section C in

Fig. 3, is another unitary evolution, converging into the final less dispersive

state, or even into a dispersion-free state. This is achieved as the cumulative

effects of rotary operations causing interference among the quantum bits.

The quantum Fourier transform for the case of the factoring algorithm [13]

is an example of such a third step [2,3,11]. The iterative combination of two

Walsh±Hadamard transforms and a CPS (or conditional phase shift) in a

quantum search algorithm [8] and the building up of the correlation function

in a quantum simulator [9] may also be considered as examples of the

third step.



Reduction of Theoretical Uncertainty in Quantum Computing 705

The fourth step, which we represent as section D in Fig. 3, is the reading

or measuring of the final solution state in the output port. The less the

uncertainty in this final state is, the more accurately one can read it.

3. DIAGRAM FOR THE EVOLUTION OF LOGICAL STATES

3.1. State Space Diagram

The third step in our quantum computing schematic is crucial for making
quantum computing useful, because without this all we can achieve is an

utterly unreadable superposition of all the provisional solutions. We have

created a diagram (Fig. 4) to visualize the evolution of uncertainty in the

quantum logical process of a pair of bits working as an elemental gate, such

as a CN, CR, or CPS gate. Each such gate can be represented as an operation

on bit-states by an SU(2) matrix [1].
Figure 4 (a) represents the state space for a single pair of bits, consisting

of a control bit ci and target bit tj. The horizontal axis represents the probability

C that the control bit is in state ) 1 & , and the vertical axis represents the same

probability T for the target bit. In the terminology of quantum logic, we are

plotting the temporal change of the truth value of the proposition the target
bit is in state ) 1 & together with the truth value of the proposition the control
bit is in state ) 1 & .

The temporal evolution of the state of a provisional solution (an entire

row in the quantum computer) may be tracked in the n-dimensional state

space, by considering the two-dimensional subspaces generated by control±

target pairs for each row. With that in mind we define the dispersion of the
state represented by row-vector b 5 (b1, b2, . . . , bn) as

$ 5 min
d

{| b 2 d | ) d is a dispersion-free vector} (3.1)

This is a measure of how close b is to one of the 2n dispersion-free vectors

in the state space. We now consider the effect that row operations have on $.

For a control±target bit (C-T) pair i ± j, suppose both the control and
target are in an initial superposition of maximal uncertainty: (1/ ! 2)( ) 0 & 1
) 1 & ). Then we represent the pair by the closed circle at the center point (0.5,

0.5) in the left diagram (Fig. 4a). The theoretical dispersion for a pair of bits

is maximal in this initial superposition, because the shortest distance to any

one of all the dispersion-free states (0, 0), (0, 1), (1, 0), or (1, 1) is maximal

at this middle point. Since we are interested in the evolution of the truth
values of target bits, we label this first point Ti, j(0). We follow the evolution

of the state as it is affected by controlled rotations.

A controlled rotation by angle b around the y axis RÃbyi, j moves the truth

value of the target bit away from the initial superposition point into some
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point in the triangular region defined by the 6 45-deg lines connecting the

points (0, 0.5) and (1, 1) or (0, 0.5) and (1, 0), and the vertical line at C 5
1, as shown in Fig. 4a or 4b. If the angle of rotation is 6 p /2, the truth value
of the target bit increases or decreases so that the C-T pair falls on one of

the 6 45-deg lines. This is proven in Section 3.2 below.

Suppose the target is subjected to y rotation through angle p /2. Then

the pair state is moved from the center of the left diagram [with Ti, j (0)] to

a state with truth value Ti, j(1).

Now suppose that target becomes a control bit bj with truth value Cj,k(1) 5
Ti, j(1) for a new target bit bk in a state of maximal dispersion [point A with

Tj,k(1) in the right diagram]. Another y rotation through angle p /2 moves the

new target to a bit state with probability Tj,k(2).

Consecutive similar rotations for C-T pairs, where the control is the

target from the preceding rotation and the target is in a maximally uncertain

state, produce targets with truth values converging to 1.
As a matter of course, these dispersions are measured relative to the

fixed basis, which may be preferentially determined by experimental situation.

3.2. Derivation of the Truth Values

We show the method for calculating the probability T for the case of a
controlled rotation around the y axis.

A free rotation around the y axis by angle b [1] is expressed as

RÃby 5 1 cos( b /2) 2 sin( b /2)

sin( b /2) cos( b /2) 2 (3.2)

Applying this to an initial target bit j in state (1/ ! 2) ( ) 0 & 1 ) 1& ) with Tj (0) 5
1/2 (we write Tj instead of Ti,j because the control bit is not at issue for this

calculation), we get

RÃby ) Tj (0) & 5 1 cos( b /2) 2 sin( b /2)

sin( b /2) cos( b /2) 2 1

! 2 F 1 10 2 6 1 01 2 G
5

1

! 2 F 1 cos
b
2

7 sin
b
2 2 ) 0 & 1 1 6 cos

b
2

1 sin
b
2 2 ) 1 & G (3.3)

Thus, the free rotation results in

Tj (1) 5 Z 1

! 2 1 6 cos
b
2

1 sin
b
2 2 Z

2

(3.4)

Then the change of T in the controlled rotation for control bit i and

target bit j is given as
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D Ti, j 5 (Tj (1) 2 Tj (0))C

5 F Z 1

! 2 1 6 cos
b
2

1 sin
b
2 2 Z

2

2 Z 1

! 2 Z
2 G C

5 F 1

2
(1 6 sin b ) 2

1

2 G C

5 6
sin b

2
C (3.5)

which gives the new T value:

Ti, j(1) 5 Ti, j (0) 1 D Ti, j (3.6)

Similar calculations give the change D Ti, j for other operations such as

CRs around the x axis.

It is not difficult to establish that a CN operation PÃCN, which can be
represented in terms of a 6 p rotation around the x axis by PÃCN 5 6 iRÃ6 p

x ,

does not change the truth value of the target bit ( D Ti,j 5 0) if it is initially

in the superposition (1/ ! 2)( ) 0 & 1 ) 1 & ), leaving the target bit always on the

horizontal line at T 5 0.5 for any initial state of the control bit.

The controlled controlled not (CCN) operation PÃCCNij,k (i, j control bits,

k target bit), which is useful to construct NAND gates for classical computing,
can be decomposed into C-T operations as follows:

PÃCCNij, k 5 SÃp /2
j, i SÃp /2

i, j RÃp /2
xi, kPÃCNi, jRÃ3 p /2

xj, k PÃCNi, jRÃp /2
xj, k (3.7)

where RÃaxj, k denotes a CR operation around the x axis by angle a , PÃCNi,j a

CN, and SÃgi, j a CPS by angle g , respectively [1]. Therefore, the overall change

n Tij,k can be estimated as the sum of the changes of these elemental operations,

resulting in D Tij,k 5 0 when applied to a target initially in the maximally

uncertain state.

Moreover, application of the controlled rotation around the y axis RÃby to
a general superposition state ) Tk(0) & 5 g ) 0 & 6 e ) 1 & gives

RÃby ) Tk(0) & 5 1 cos( b /2) 2 sin( b /2)

sin( b /2) cos( b /2) 2 F g 1 10 2 6 e 1 01 2 G
5 F 1 g cos

b
2

7 e sin
b
2 2 ) 0 & 1 1 g sin

b
2

6 e cos
b
2 2 ) 1 & G (3.8)

where ) g ) 2 1 ) e ) 2 5 1. Then, by a procedure simillar to that leading to Eq. (3.5),
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D Ti, j 5 F ( ) g ) 2 2 ) e ) 2) 1 2 cos b
2

6 (ge* 1 g*e)
sin b

2 G C (3.9)

of which Eq. (3.5) is a special case, and the asterisk denotes the complex

conjugate.

Furthermore, for a controlled rotation by a fractional angle b 5 p /2m,

the following is obtained using Eq. (3.9):

D Ti, j 5
1

2 F ( ) g ) 2 2 ) e ) 2) 1 b
2

2
2

b 4

24
1

b 6

720
2 . . . 2 (3.10)

6 (ge* 1 g*e) 1 b 2
b 3

6
1

b 5

120
2 . . . 2 G C

5
1

2
[ 6 (ge* 1 g*e) b ]C 1 W (3.11)

where the remainder of the Taylor expansion W is estimated to be less than
( b 2/4 1 b 3/2)C, because ) g ) , ) e ) # 1.

Then the number of steps for consecutive controlled rotations RÃp /2m
y to

reach the dispersion-free state at (1, 1) in Fig. 4 can be estimated to be no

more than

1

D Ti, j

5
1

b C 1 W
’

1

b C
5

4m

p
, 1.27m (3.12)

assuming the new target bits always begin in the maximally uncertain state,

i.e. g 5 e 5 1/ ! 2. The upper bound of the accumulated error in the consecutive

rotation is estimated as

W 3 1 number of steps ’
1

b C 2 ,
b
4

1
b 2

2

Þ 0 for b ® 0, i.e., m ® ` (3.13)

The convergence of this process is also verified by a Bloch vector making
up an angle p by consecutive b 5 p /2m rotations.

4. CONCLUSIONS

We have developed a way to estimate intrinsic uncertainties in provi-

sional results of quantum computations. We also calculated the reduction of

uncertainty resulting from particular controlled rotations (RÃby ) applied to

control±target bit pairs, and also showed that other C-T operations do not reduce
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target bit uncertainty when the initial state is the maximal uncertainty

superposition.

A lower bound in the number of computational steps to achieve the
solution without the intrinsic uncertainty was estimated by this method, within

a finite error which decreases with the angle of controlled rotation. In this

way the intrinsic or theoretical efficiency could be maximized for any quantum

computing process, so that efforts to reduce operational uncertainty should

become effective.

This method could be applied to other kinds of quantum computing
schemes in addition to the solid-state implementation focused on in this paper.

Such a tool may be effective for designing and refining quantum algorithms,

and for implementing quantum systems, as well as aid in understanding

quantum entanglements.

ACKNOWLEDGMENTS

This work was partially supported by the Proposal-Based New Industry

Creative Type Technology R&D Promotion Program of the New Energy and

Industrial Technology Development Organization (NEDO) of Japan.

REFERENCES

1. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,

J. A. Smolin, and H. Weinfurter, Physical Review A, 52, 3457 (1995).

2. A. Barenco, A. Ekert, K.-A. Suominen, and P. ToÈ rmaÈ , Physical Review A, 54, 139 (1996).

3. D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, Physical Review A, 54,

1034 (1996).

4. P. Benioff, Journal of Statistical Physics, 22, 563 (1980); Physical Review Letters, 48,

1581 (1982).

5. D. W. Cohen, An Introduction to Hilbert Space and Quantum Logic, Springer, New York

(1989), Chaps. 3 and 6.

6. D. Deutsch, Proceedings of the Royal Society of London A, 400, 97 (1985); 425 , 73 (1989).

7. R. P. Feynman, International Journal of Theoretical Physics, 21, 467 (1982); Optics News,

11, 11 (1985); Foundations of Physics, 16, 507 (1986); Feynman Lectures on Computation ,

eds. A. J. G. Hey and R. W. Allen, Addison-Wesley, Reading, Massachusetts (1996).

8. L. K. Grover, Physical Review Letters, 79, 325 (1997).

9. S. Lloyd, Science , 273, 1073 (1996).

10. H. Matsueda, and S. Takeno, IEICE Transactions on Fundamentals of Electronics, Commu-

nications and Computer Sciences, E80-A(9), 1610 ±1615 (1997); in Proc. 4th Workshop

on Physics and Computation (PhysComp96) , eds. T. Toffoli, M. Biafore, and J. LeaÄ o, New

England Complex Systems Institute, Cambridge, Massachusetts (1996), pp. 215±222; H.

Matsueda, in Proc. European Conference on Circuit Theory and Design (ECCTD’ 97),

Budapest (1997), pp. 265±270; in Unconventional Models of Computation , eds. C. S.

Calude, J. Casti, and M. J. Dinneen, Springer-Verlag, Singapore (1998), pp. 286±292; in

Proc. The First NASA International Conference on Quantum Computing and Quantum

Communication s (NASA-QCQC’ 98), Lecture Notes in Computer Science, Springer-Verlag



Reduction of Theoretical Uncertainty in Quantum Computing 711

(1998); in Photonic Quantum Computing II, SPIE Proceedings 3385 , 84±94 (1998); Super-

lattices and Microstructures, 24(4), (1998) 11 pp.

11. C. Miquel, J. P. Paz, and R. Perazzo, Physical Review A, 54, 2605 (1996).

12. P. PtaÂk and S. PulmannovaÂ, Orthomodular Structures as Quantum Logics, Kluwer, Dor-

drecht (1991), Chap. 5.

13. D. R. Simon, in Proc. of the 35th Annual Symposium on the Foundations of Computer

Science (FOCS), ed. S. Goldwasser, IEEE-Computer Society Press, Los Alamitos (1994),

pp. 116±123; P. W. Shor, Ibid., pp. 124±134.


